B.Sc. ELECTRONICS SYLLABUS
 B.Sc. I YEAR Semester-I
 DSC- Paper - I: Circuit Analysis
 Total number of hours : 56
 No of hours per week : 4
 Credits : 4

UNIT - I

AC Fundamentals: The sine wave -average and RMS values - The J Operator Polar and Rectangular forms of complex numbers - Phasor diagram-Complex impedance and admittance.

Kirchhoff's Current and Voltage Laws: Concept of Voltage and current sources-KVL and KCL- application to simple circuits (AC and DC) consisting of resistors and sources - Node voltage analysis and Mesh analysis.

UNIT-II

Network Theorems (DC and AC): Superposition Theorem, Thevenin's Theorem,
Norton's Theorem, Maximum power transfer Theorem, Reciprocity Theorem, Milliman's Theorem, Application to simple Networks.

UNIT-III

RC and RL Circuits : Transient Response of RL and RC Circuits with step input, Time constants. Frequency response of RC and RL circuits , Types of filters - Low pass filter and High pass filter- frequency response, passive differentiating circuit and passive integrating circuit.

UNIT-IV

Resonance : RLC Series and parallel resonance circuits -Resonant frequency $-Q$ Factor-Bandwidth-Selectivity.

Cathode Ray Oscilloscope: Cathode Ray Tube (CRT) and its working, electron gun focusing, deflection sensitivity, florescent screen. Measurement of Time period, Frequency, Phase and amplitude.

Text Books:

1) Basic Electronics-Grob 10th edition(TMH)
2) Circuit Analysis-P.Gnanaswam pearson Education.
3) Circuit and Networks-A. Sudhakar \& S. Pallri(TMH)
4) Pulse, digital \& switching waveforms-Milliman \&Taub.
5) Networks, Lines and Fields-John Ryder (PHI)
6) Network theory-Smarajit Ghosh(PHI)

Chairperson

B.Sc. I Year, Semester - I : Electronics Practical
 Paper - I : Circuit Analysis Lab

No. of hours per week : 3

1. Measurement of peak voltage, frequency using $C R O$.
2. Measurement of phase using CRO.
3. Thevenin's theorem and Norton's theorem - verification.
4. Maximum power transfer theorem - verification.
5. CR circuit - Frequency response - (Low pass and High pass).
6. $C R$ and LR circuits - Differentiation and integration - tracing of waveforms.
7. LCR - Series resonance circuit - frequency response - Determination of f_{o}, Q and band width.
8. Simulation: i) verification of KVL and KCL
ii) study of network theorems.
iii) study of frequency response (LR).

Note: Student has to perform minimum of Six experiments.
Reference Books:

1) Lab manual for Electronic Devices and Circuits $-4^{\text {th }}$ Edition. By David A Bell -PHI
2) Basic Electronics - A Text Lab Manual -Zbar, Malvino, Miller.
